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ABSTRACT 
Many authors modified Fuzzy metric space and proved fixed point results in Fuzzy metric space. Singh B. and 

Chauhan were first introduced the concept of compatible mappings of Fuzzy metric space and proved the 

common fixed point theorem. Cho et al were introduced the concept of compatible mapping of type (P). In this 

paper, a fixed point theorem for six self-mappings is presented by using the concept of compatible maps of 

type(P) which is the generalized result using common fixed point theorem. 
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INTRODUCTION 
The concept of Fuzzy sets was initially investigated as a new way to represent vagueness in everyday life. 

Subsequently, it was developed by many authors and used in various fields. To use this concept in Topology and 

Analysis, several researchers have defined Fuzzy metric space in various ways. In recently,  proved fixed point 

results for Fuzzy metric space. In the sequel, Singh and Chauhan introduced the concept of compatible 

mappings of Fuzzy metric space and proved the common fixed point theorem. The concept of compatible 

mapping of type (P) proved a fixed point theorem for six self maps in a fuzzy metric space [1-2] and [5-7). In 

this paper, a fixed point theorem for six self maps has been established using the concept of compatible maps of 

type (P), which generalizes the result. For the sake of  completeness, we recall some definitions and known 

results in Fuzzy metric space. 
 

PRELIMINARIES 
In preliminaries, we analysis some fundamentals of basic fuzzy metric spaces, which be used the rest of our 

paper. 
 

Definition 2.1. A binary operation : 0,10,10,1is called a t-norm if ([0,1],) is an abelian topological 

monoid with unit 1 such that ab cd whenever a c and b d for a, b, c, d [0, 1]. 
 

Definition 2.2.  The 3-tuple (X, M,) is said to be a Fuzzy metric space if X is an arbitrary set, is a continuous 

t-norm and M is a Fuzzy set in 2 X 0,satisfying the following conditions: for all x, y, z X and s, t > 0 
(FM-1) M (x, y, 0) = 0, 

(FM-2) M (x, y, t) =1 for all t > 0 if and only if x = y, 

(FM-3) M (x, y, t) = M (y, x, t), 

(FM-4) M (x, y, t) M (y, z, s) M (x, z, t + s), 
(FM-5) M (x, y, .) : [0,) [0, 1] is left continuous, 
(FM-6) lim M (x, y, t) =1. 
t 
Note that M(x, y, t) can be considered as the degree of nearness between x and y with respect to t. We identify x 

= y with M(x, y, t) = 1 for all t > 0. The following example shows that every metric space induces a Fuzzy 

metric space. 
 

Example 2.1. [9] Let (X, d) be a metric space. Define a b = min {a, b} and 

 
for all x,y t  and  t  > 0. Then (X, M,) is a Fuzzy metric space. It is called the Fuzzy metric space induced by 

d. 
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Definition 2.3. [9] A sequencen x in a Fuzzy metric space (X, M,) is said to be a Cauchy sequence if and 

only if for each > 0, t > 0, there exists n0 N such that 
M (xn, xm , t) > 1 - for all n, m n0. 
The sequence {xn} is said to converge to a point x in X if and only if for each > 0, t > 0 there exists n0N 

such that M (xn, x, t) > 1 - for all n,m n0. 
A Fuzzy metric space (X, M,) is said to be complete if every Cauchy sequence in it converges to a point in it. 
 

Definition 2.4. [11] Self mappings A and S of a Fuzzy metric space (X, M,) are said to be compatible if and 

only if M (ASxn, SAxn, t)1 for all t > 0, whenever {xn} is a sequence in X such that Sxn, Axn p for some p 

in X as n . 
 

Definition 2.5. [10] Self maps A and S of a Fuzzy metric space (X, M,) are said to be compatible of type (P) 

M (AAxn, SSxn, t) 1 for all t >0, whenever {xn} is a sequence in X such that Sxn, Axn p for some p in X 

as n . 
 

Proposition 2.1. [5] In a fuzzy metric space (X, M, ) limit of a sequence is unique. 
 

Lemma 2.1. [4] Let (X, M,) be a fuzzy metric space. Then for all x, yX, M (x, y,.) 
Lemma 2.2. [1] Let (X, M,) be a fuzzy metric space. If there exists k(0, 1) such that for all x, yX, M (x, y, 

kt) M (x, y, t) t > 0, then x = y. 
 

Lemma 2.3. [5] Let {xn} be a sequence in a fuzzy metric space (X, M,). If there exists a number k(0, 1) 

such that M (xn+2, xn+1, kt) M (xn+1, xn, t) t > 0 and nN. Then {xn} is a Cauchy sequence in X. 
 

Lemma 2.4. [7] The only t-normsatisfying r r r for all r[0, 1] is the minimum t-norm, that is a b = 

min{a, b} for all a, b[0, 1]. 
 

Lemma 2.5. [3] Let (X, M,) be a fuzzy metric space if there exists q(0,1) such that M (x, y, qt)M (x, y, 

t/qn) for integer n. Taking limit as n , M (x, y, t) 1 and hence x = y. 
 

MAIN RESULTS 
Theorem 3.1. Let (X, M, ) be a complete fuzzy metric space and let A, B, S, T, P and Q be mappings from X 

into itself such that the following conditions are satisfied: 
(a) P(X) ST(X), Q(X) AB(X); 
(b) AB = BA, ST = TS, PB = BP, QT = TQ; 

(c) Either AB or P is continuous; 

(d) Pair (P, AB) is compatible and (Q, ST) is compatible map of type (P); 

(e) There exists q(0, 1) such that for every x, yX and t > 0 
M (Px, Qy, qt) M (ABx, STy, t) M (Px, ABx, t) M (Qy, STy,t) M (Px, STy, t). Then A, B, S, T, P and Q 

have a unique common fixed point in X. 
 

Proof. 

Let x0X. From (a) there exist x1, x2X such that Px0 = STx1 and Qx1 = ABx2. 
Inductively, we can construct sequences {xn} and {yn} in X such that: 
Px2n-2 = STx2n-1 = y2n-1 and Qx2n-1 = ABx2n = y2n for n = 1, 2, 3... 

 

Step 1. Put x = x2n and y = x2n+1 in (e), we get 
M (Px2n, Qx2n+1, qt) M (ABx2n, STx2n+1, t) M (Px2n, ABx2n, t) M (Qx2n+1,STx2n+1,t) M(Px2n, 

STx2n+1, t). 
= M (y2n, y2n+1, t) M (y2n+1, y2n, t) M(y2n+2, y2n+1, t) M (y2n+1, y2n+1, t) 
M (y2n, y2n+1, t) M (y2n+1, y2n+2, t). 
From lemmas 2.1 and 2.2, we have 

M (y2n+1, y2n+2, qt) M (y2n, y2n+1, t). 
Similarly, we have 

M (y2n+2, y2n+3, qt) M (y2n+1, y2n+2, t). 
Thus, we have 

M (yn+1, yn+2, qt) M (yn, yn+1, t) for n = 1, 2,... 
M (yn, yn+1, t) M (yn, yn+1, t/q) 
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M (yn-2, yn-1, t/q2) 
M (y1, y2, t/qn)1 as n ,and 
hence M (yn, yn+1, t) 1 as n for any t > 0. 
For each > 0 and t > 0, we can choose n0N such that 
M (yn, yn+1, t) > 1 - for all n > n0 
For m, nN, we suppose mn. Then we have 
M (yn, ym, t) M (yn, yn+1, t/m-n)M (yn+1, yn+2, t/m-n) ... M (ym-1, ym, t/m-n) 
(1 -) (1 -) ... (1 -) (m - n) times 
(1 -) and hence {yn} is a Cauchy sequence in X. 
Since (X, M, ) is complete, {yn} converges to some point z X. Also its 
subsequences converge to the same point zX. 
i.e. {Qx2n+1} z and{STx2n+1} z (1) 
{Px2n} z and {ABx2n } z. (2) 
 

Case I. Suppose AB is continuous. 
Since AB is continuous, we have (AB)2x2n ABz and ABPx2n ABz. 
As (P, AB) is compatible pair of type (P), we have 

M (PPx2n, ABABx2n,t) =1 for all t > 0 or M (PPx2n,ABz,t) =1. 

Therefore PPx2n ABz 
 

Step 2. Put x = ABx2n and y = x2n+1 in (e), we get 
M (PABx2n, Qx2n+1, qt) M (ABABx2n, STx2n+1, t) M (PABx2n, ABABx2n, t) 
M (Qx2n+1, STx2n+1, t) M (PABx2n, STx2n+1, t). 
Taking n , we get 
M (ABz, z, qt) M (ABz, z, t) M (ABz, ABz, t) M (z, z, t) M (ABz, z, t) 
M (ABz, z, t) M (ABz, z, t) i.e. M(ABz, z, qt) M(ABz, z, t). 
Therefore, by using lemma 2.2, we get ABz = z……… (3) 
 

Step 3. Put x = z and y = x2n+1 in (e), we have 
M (Pz, Qx2n+1, qt) M (ABz, STx2n+1, t) M (Pz, ABz, t) 
M (Qx2n+1, STx2n+1, t) M (Pz, STx2n+1, t). 
Taking n and using equation (1), we get 
M (Pz, z, qt) M (z, z, t) M (Pz, z, t) M (z, z, t) * M (Pz, z, t) 
M (Pz, z, t) M (Pz, z, t) i.e. M(Pz, z, qt) M(Pz, z, t). 
Therefore, by using lemma 2.2, we get Pz = z. Therefore, ABz = Pz = z. 

 

Step 4. Putting x = Bz and y = x2n+1 in condition (e), we get 
M (PBz, Qx2n+1, qt) M (ABBz, STx2n+1, t) M (PBz, ABBz, t) 
M (Qx2n+1, STx2n+1, t) M (PBz,STx2n+1, t). 
As BP = PB, AB = BA, so we have P (Bz) = B (Pz) = Bz and (AB)(Bz) = (BA)(Bz) = 

B (ABz) = Bz. 

Taking n and using (1), we get 
M (Bz, z, qt) M (Bz, z, t) M (Bz, Bz, t) M (z, z, t) M (Bz, z, t) 
M (Bz, z, t) M (Bz, z, t) i.e. M(Bz, z, qt) M(Bz, z, t). 
Therefore, by using lemma 2.2, we get 

Bz = z and also we have ABz = z . Az = z. 

Therefore, Az = Bz = Pz = z……………….. (4) 
 

Step 5. As P (X) ST (X), there exists uX such that z = Pz = STu. 
Putting x = x2n and y = u in (e), we get 

M (Px2n, Qu, qt) M (ABx2n, STu, t) M (Px2n, ABx2n, t) 
M (Qu, STu, t) M (Px2n, STu, t). 
Taking n and using (1) and (2), we get 
M (z, Qu, qt) M (z, z, t) M (z, z, t) M (Qu, z, t) M (z, z, t) 
M (Qu, z, t) i.e. M(z, Qu, qt) M(z, Qu, t). 
Therefore, by using lemma 2.2, we get Qu = z. Hence STu = z = Qu. Since (Q, ST) is 

compatible pair of type (P), therefore, by proposition 2.2, we have QSTu = STQu. 

Thus Qz = STz. 
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Step 6. Putting x = x2n and y = z in (e), we get 
M (Px2n, Qz, qt) M (ABx2n, STz, t) M (Px2n, ABx2n, t) 
M (Qz, STz, t) M (Px2n, STz, t). 
Taking n and using (2) and step 5, we get 
M (z, Qz, qt) M (z, Qz, t) M (z, z, t) M (Qz, Qz, t) M (z, Qz, t) 
M (z, Qz, t) M (z, Qz, t) i.e. M(z, Qz, qt) = M(z, Qz, t). 
Therefore, by using lemma 2.2, we get Qz = z. 

 

Step 7. Putting x = x2n and y = Tz in (e), we get 
M (Px2n, QTz, qt) M (ABx2n, STTz, t) M (Px2n, ABx2n, t) 
M (QTz, STTz, t) M (Px2n, STTz, t). 
As QT = TQ and ST = TS, we have QTz = TQz = Tz and ST (Tz) = T (STz) = TQz = 

Tz. 

Taking n , we get 
M (z, Tz, qt) M (z, Tz, t) M (z, z, t) M (Tz, Tz, t) M (z, Tz, t) 
M (z, Tz, t) M (z, Tz, t) i.e. M(z, Tz, qt) = M(z, Tz, t). 
Therefore, by using lemma 2.2, we get Tz = z. Now STz = Tz = z implies Sz = z. 

Hence Sz = Tz = Qz = z. (5) 

Combining (4) and (5), we get Az = Bz = Pz = Qz = Tz = Sz = z. Hence, z is the 

common fixed point of A, B, S, T, P and Q. 

 

Case II. Suppose P is continuous. As P is continuous, P2x2n Pz and P (AB)x2nPz. 
As (P, AB) is compatible pair of type (P), we have 

M (PPx2n, ABABx2n,t) =1 for all t > 0 or M (Pz,ABABx2n,t ) =1 

Therefore (AB)Px2n Pz. 
 

Step 8. Putting x = Px2n and y = x2n+1 in condition (e), we have 
M (PPx2n, Qx2n+1, qt) M (ABPx2n, STx2n+1, t) M (PPx2n, ABPx2n, t) 
M (Qx2n+1, STx2n+1, t) M (PPx2n, STx2n+1, t). 
Taking n , we get 
M (Pz, z, qt) M (Pz, z, t) M (Pz, Pz, t) M (z, z, t) M (Pz, z, t) 
M (Pz, z, t) M (Pz, z, t) i.e. M(Pz, z, qt) M(Pz, z, t). 
Therefore by using lemma 2.2, we have Pz = z. Further, using steps 5, 6, 7, we get Qz 

= STz = Sz = Tz = z. 

 

Step 9. As Q(X) AB(X), there exists wX such that z = Qz = ABw. 
Put x = w and y = x2n+1 in (e), we have 

M (Pw, Qx2n+1, qt) M (ABw, STx2n+1, t) M (Pw, ABw, t) 
M (Qx2n+1, STx2n+1, t) M (Pw, STx2n+1, t). 
Taking n , we get 
M (Pw, z, qt) M (z, z, t) M (Pw, z, t) M (z, z, t) M (Pw, z, t) 
M (Pw, z, t) M (Pw, z, t) i.e. M(Pw, z, qt) M(Pw, z, t). 
Therefore, by using lemma 2.2, we get Pw = z.Therefore, ABw = Pw = z. As (P, AB) 

is compatible pair of type (P), we have Pz = ABz. Also, from step 4, we get Bz = z. 

Thus, Az = Bz = Pz = z and we see that z is the common fixed point of the six maps in 

this case also. 

 

Uniqueness: Let u be another common fixed point of A, B, S, T, P and Q. 
Then Au = Bu = Pu = Qu = Su = Tu = u. Put x = z and y = u in (e), we get 

M (Pz, Qu, qt) M (ABz, STu, t) M (Pz, ABz, t) M (Qu, STu,.t) M (Pz, STu, t). 
Taking n , we get 
M (z, u, qt) M (z, u, t) M (z, z, t) M (u, u, t) M (z, u, t) 
M (z, u, t) M (z, u, t) i.e. M(z, u, qt) M(z, u, t). 
Therefore by using lemma 2.2, we get z = u. Therefore z is the unique common fixed 

point of self-maps A, B, S, T, P and Q. 

If we take B = T = I, the identity map on X in Theorem 3.1, then 

condition (b) is satisfied trivially and we get 
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Corollary 3.1. Let (X, M, ) be a complete fuzzy metric space and let A, S, P and Q 
be mappings from X into itself such that the following conditions are satisfied: 

(a) P(X) S(X), Q(X) A(X); 
(b) either A or P is continuous; 

(c) (P, A) and (Q, S) is compatible maps of type (P); 

(d) there exists q (0, 1) such that for every x, yX and t > 0 
M (Px, Qy, qt) M (Ax, Sy, t) M (Px, Ax, t) M (Qy, Sy, t) M (Px, Sy, t). 
Then A, P, S and Q have a unique common fixed point in X 
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